
.
., Article for Evaluation Engineering Magazine

Aug. 16,1993

A Survey of Data Acquisition & Analysis Software
Tools (including Visual Programming,)

Ed Baroth, Ph. D., Manager, and
Chris Hartsough, Lcc Johnscn,]im McGregor, Mag Powell-Mccks, Amy Walsh,
George Wells, Seth Chazanoff and Tcd Brunzie, Members of Technical Staff,

Mcasurcmcnt Technology Center
Jet Propulsion Laboratory, California lnstitutc of Technology

PART 1

INTRODUCTION
Part of the]ct Propulsion Laboratory’s (] T’L’s) instrumentation Section, the Mcasurcmcnt

Technology Center (MTC) evaluates data acquisition hardware and software products for inclusion into
the instrument Loan Pool, which arc then made available to JPL cxpcrimcntcrs. As such, it acts as a
focus for off-t he-shelf products. The MTC also configures tu rn-kcy nwasurcmcnt systems that include
integrated sensors, signal conditioning, data simulation, acquisition, analysis, display and control
capabilities.ltz

The purpose of this article is to discuss several different types of software tools the MTC has
used to develop such systems. To help demonstrate the capabilities of each package, a sample test
program was dcvclopcd and will bc dcscribcd. Figure 1 shows five categories of toolscts on a ‘crossroads’
sign to introduce the reader to the confusing array of programming tools available. This article should
help rcducc the confusion.

The signs express separate approaches that can bc taken to performing data acquisition,
analysis and display: the ‘traditional’ approach of text-based BASIC or C programming, the
combination of graphical user intcrfacc (GUI) tools with text-based programming approach (with or
without instrument support), or the visual programming approach.

Code is written in visual programming languages by creating and conncctin~ icons. These icons
rcprcscnt functions (subroutines) and arc conncctcd by ‘wires’ that arc paths which variables travel
from one function to the next. Visual ‘cocic’ is actually the diagram of icons and wires rather than a text
file of sequential instructions. Although available since 1986, visual programming software is just now
becoming popular duc to maturity, usc in general purpose applications and availability across
platforn}s.3~45

TESTED SOFTWARE PACKAGES
This article evaluates some of the genera] purpose data acquisition and analysis packages:

LabVIEW and LabWindows from National lnstrumcnts, Visual Engineering Environment (VEE) from
Hewlett-Packard and WavcTcst VIP from Wavctck. Table 1 shows the version, platforms and
configurations. Also discussed will bc N! T’owcr from Signal Tcchno]ogy inc., LabTcch Notebook from
Laboratory Tcchnologics and ATEasy from Gcotcst. ?’here are certainly rnorc packages available, with
the list growing daily, but not all fit the needs of the MTC.

The MTC acts as a scrvicc to JPL cnginccrs and scientists, who have widely diverse needs, from
simple onc day programming tasks to projects that require many months and several cnginccrs. in
scIccting the tooIs to usc for providing this service and this article, tools arc examined with the
following questions in mind:

General purpose system approach
The software must bc as general purpose as possible. It must command a variety of intcrfacc

cards to acquire, analyze, display data and control different kinds and types of instrumentation. This
includes the ability to easily and quickly crcatc instrument drivers when not available. It is also
important that a graphical user intcrfacc (C,U1) can bc developed. The computer acts as the ‘window’ to
the cxpcrimcnt and informatiotl from all the instruments should bc integrated on the scrccn. The
software should act in concert with the hardware to form a ‘systcm solution.’ Software packages that

1

. . fit onc niche, however WCII, (e.g., convert a PC into an oscilloscope, or do IN’ or process control), but
cannot be cxpndcd into a general purpose systcm, arc of no usc to the M’I’C.

Quickly learned, easy to use
In judging software tools, the MTC is intcrcstcd in the time to learn and the case of LISC of

software tools. Of course, the more a tool is used, the easier it is to USC, making these criteria somewhat
subjective. What isn’t subjective is whether the software requires an cxpcricnccd BASIC or C
programmer, uscs visual programming, encourages or forces object-oriented software dcvclopmcnt.

Available on more than one platform
It is highly advantageous to usc a tool that is available on more than onc platform, especially

if the applications thcmsclvcs arc transportable. Applications dcvclopcd for onc customer’s Mac, can
bc modified to run on a PC, eliminating duplicity of effort. It also rcduccs learning time, as onc tool need
bc learned, instead of different tools for different platforms.

Generates a stand alone, run-time version
The program is usually dcvclopcd on a computer in the MTC laboratory before delivery to the

customer. It’s desirable that dclivcrcd turn-key systems not require a copy of the developmental tool
used to generate the program. The gcncratcd program should bc a stand-alone program, or at least
require only a cheaper run-time package for cxccu tion.

Well established with a good track record
From previous cxpcricncc, the MTC is wary of ncw programs and newly rclcascd versions of

established programs. Delays resulting from undiscovered ‘features’ in a dcvclopmcnt tool can intcrfcrc
with the t imcly delivery of a systcm. Good support from an established manu facturcr is ncccssary, as is
training bccausc the MTC frequently delivers systems to users who make their own day-to-day changes.

Hardware or software keys not required
After losing weeks of work duc to k)st, broken, or non-working keys, the MTC no longer supports

dcvek)pmcnt tools that require either a hardware or software kcy (not simply a liccnsc).

Platform

IBM PC/Clone
LabWindows
Version 2,3a
$1995

LabVIEW
for Windows
Version 2.5.2
$1995

WavcTcst VIP
Version 1.0
$695

VEE Windows
Version 2.0
$1995
Kun Time: $495

Macintosh
LabVIEW
Version 2.2.1
$1995

Minimum Configuration
I{ocommcnd cd: ()

IBM PC AT or compatible 80286, math coprocessor, 2 Mb
memory, 8 Mb hard disk space, EGA, VGA, Super VGA, or
Flcrculcs graphics adapter, mouse, DOS 3.1

IBM PC AT or compatible 80386/25, math coprocessor, 8
Mb memory, 16 Mb hard disk space, EGA, VGA, Super
VGA, or Hercules graphics adapter, mouse, DOS 3.1,
Windows 3.1

IBM PC AT or comp~tiblc 80286/25, (80386), math
coprocessor, 3 Mb memory, 5 Mb hard disk space, EGA,
(VGA), mouse, DOS 3.1, Windows 3.1

IBM PC or compatible 80386 /33DX, math coprocessor,
(80486DX), 8 Mb memory, (16 Mb), 15 Mb hard disk space,
VGA 640x480 16-color, (SVCA 1024x768 256 color),
n~ousc, DOS 5.0, Windows 3.1

Any Macintosh cornputcr with at Icast 4MB of RAM, hard
disk, Systcm 6.0.3 or later, 5 Mb RAM for Systcvn 7.0 or later,
20 Mb hard disk space.
68040 processor required for Version 3.0

Configuration Used

80486/33, 16 Mb memory, 630
Mb hard disk, VGA, mouse, 1>0S
5.0

80486/33, 16 Mb memory, 630
Mb hard disk, VGA, mouse, 110S
5.0, Windows 3.1

80386/25, 8 Mb memory, 220 Mb
hard disk, VGA, mouse, DOS 5.0,
Windows 3.1, Visual BASIC

80486/33, 16 Mb memory, 630
Mb hard disk, VGA, mouse, D(X
5.0, Windows 3.1

Quadra 950,24 Mb RAM, 400 Mb
hard disk, Systcm 7.0.1, and Mac
IIfx, 20 Mb RAM, 160 Mb hard
disk, System 7.0.1

2

., “ Hewlett Packard
HP VEE
Version 2.0
$6000

sun
Microsystems

LabVIEW (Spare)
Version 2.5.2
$4000

VEE (Spare)
Version 2.0
$6000

HP 9000 Series 300, 400, 700, 12 Mb RAM, (16 Mb), EII’-UX Model 382/ 32 Mb I~AM/ 420
8.x, X Windows 11.4,5 Mb Swap, 20 Mb hard disk spttcc SCSI hard disk

Sparcl or later, supports OpcnWindows 3 or Xl 11<4 or 1-U, Spare 2GX, 32 Mb RAM, 880 Mb
24 Mb RAM, 32 Mb disk swap, 12 Mb hard disk space hard disk

Sparcl or later, Suti OS 4.1.2 or 4.1.3, Xl 1 or Opcn Systems Spare 2GX, 32 Mb RAM, 880 Mb
2.0 c)r 3.0, 12 Mb RAM (24 Mb), 5 Mb Swap, 20 Mb hard disk hard drive
space

TABLE 1. Tested %ftwarc Packages

GENERAL NOTES ON DRIVERS
An important part of any data acquisition/instrunwntatiot~ program is the ‘driver’ section.

Without drivers, which have come to mean software that enables communication bctwccn the computer
and the instrument, there would bc no data to acquire, analyze, or display. But there arc different kinds
of ‘drivers’: drivers intcgra tcd into the opcraling systcm, interface drivers, drivers for special purpose
internal 1/0 boards (such as analog to digital and digital to analog convcrtcrs), and higher lCVC1
instrument drivers.

The intcrfacc driver is used for controlling bus intcrfaccs, e.g., IEEE-488, RS-232, VXI or VME.
These IOW-lCVC1 protocols arc the usual means of communicating with instruments or other devices.
Drivers contain functions for controlling communications through the intcrfacc. There is also some
method provided for checking interface errors. This type of driver is used as a tool for writing the
higher level instrument drivers. Interface drivers usually come with the GPIB or 1<S-232 card, or they
may be included in the user’s software. It is scldmn that this type of driver has to be created by the
user, and when this dots occur, it is not a task for the uninitiated. All the programs tested contain this
type of 10 W-1CVCI driver.

Special purpose 1/0 boards nearly always come with a set of low-level protocols. Since these
are the most difficult to write, the prudent user should very carefully question the manufacturer of the
board, especially as to its compatibility with the application package being used. It is not unusual for
the cost of developing this t ypc of ‘driver’ to bc many times the cost of the board. All the packages
tested contain drivers for a wide range of boards, although some of thcm only s~lpport boards from tlm
same manufacturer.

What is generally called an instrument driver is really no more than a collccticm of instrument
control functions passed to an intcrfacc driver. The commands perform the following tasks: verify the
intcrfacc to the instrument, initialize or calibrate the instrumcnl, configure it for the desired operation,
start it performing the operation, check its status, and read its data. The instrument driver may be
included with the instrument or it may bc available separately. in either case, however, an instrument
driver written for onc dcvclopmcnt tool will not generally work with another. (C drivers won’t work
with BASIC, LabVIEW drivers won’t work with WavcTest V 1P, etc.)

If the driver for the instrument is not available, it must bc crcatcd. Software packages that
present a good environment for creating drivers arc important bccausc driver dcvclopmcnt can bc a time
consuming and difficu] t task if not adcqua tcl y support cd by the software tools. A friend] y development
environment can make writing the instrument driver almost trivial, assuming the instrument manual
contains all the relevant and correct information (not always a good assumption).

National lnstrumcnts, Hewlett I’ackard and Wavctck provide libraries of instrument drivers
for their rcspcctivc software. National’s and Wavctck’s lists arc more cxtcnsivc and general,
containing instruments from many manufacturers, while }Icwlctt Packard’s list is heavy on, WCII,
Hewlett Packard instruments. Murphy’s [.aw applim, howcwcr -- no matter how cxtcnsivc the library,
your particular instrument will not br included. That’s the bad news. The good news is that with any of
the tested packages, writing a driver is really no big deal (except maybe for the first one).

in most cases, the user only ncccts half a dozen or so functions of an instrument’s capability.
Writing a driver is simply tapping those functions, not every function the instrument can perform. Once
writ ten, the driver bccomcs intcg,ratcd into the program. Vast libraries of instrument drivers arc of
great importance only to the beginner. Advanced users usually copy parts of the library driver into

3

.,, their own program, or most often write their own from scratch. This way, only the commands used arc
included, and the complexities of large drivers arc avoidrd.

PROGRAMMING WITH THE BASIC LANGUAGE
With the arrival of the Hewlett Packard lntcrfacc Bus (1-lPIB) and HP BASIC (also known as

Rocky Mountain BASIC), the average cnginccr could develop an application in a fraction of the time it
took using PL/M or asscrnbly languages. All the low ICVCI HPIB driver calls were built into HP BASIC.
Of course HP BASIC was only available for HP’s computers and only HP instruments had an HPIB bus.
However, this rncthod of communicating bctwccn a computer and an instrument proved to bc so popular
that other manufacturers began to add HPIB bus control to their own instruments, and non-HP computer
intcrfacc cards began to show up for other computers. This instrumentation bus bccamc so popular that it
was adopted as the industry standard IEEE-488 Genera] Purpose Intcrfacc Bus (GPIB) and now
instruments using it arc comrnonplacc.

Programs for instrument control were originally written in some BASIC version on an IBM PC or
ckmc by the cnginccr that was to usc thcm. They were menu driven with no graphical intcrfacc
capability and were typically rather unsophisticated. The programs did nothing more than initialize
the instrument with a set of fixed pararnctcrs, read values from the instrument at prcdcfincd intervals,
and write the data to a file. The data was then proccsscd and plotted using another program, usually a
spread sheet program. Only whcJ~ the cnginccr could afford a programmer for a few weeks did the
programs contain anything that rcscmblcd a graphical user intcrfacc. Even then, the user interface was,
at best, little more than data being plotted in real-time as it was acquired. Programming in onc of the
mm-graphical BASIC]anguagcs is still the same.

OBJIKX’-ORIENTED PROGRAMMING
The next breakthrough in dcwcloping data acquisition systems came with the introduction of

object-oriented programming methodology. Object-oriented design is a bottom-up method of structured
programming, where the analyst begins with the fine details and works up toward the main lCVCI of
the program. It models a program as a set of coopmating objects that includes both data and functions.
Bccausc it models both behavioral and information cornplcxi t y, the program is much bet tcr organized
than if it were simply WC]] structured, This allows programs to bc easier to understand, debug, maintain
and CVOIVC. Object-oriented design lends itself to tcarn programming and code reuse.

The most common object-oriented programming tool is C++.

VISUAL BASIC
Onc of the BASIC programs that has bccomc popular is Microsoft’s Visual BASIC. There arc

two versions of Visual BASIC -- onc that requires Microsoft’s Windows and onc that is a stand-alone
dcvclopmcnt tool for DOS. The usc of the Visual BASIC for DOS Professional Edition will bc dcscribcd
here. The DOS version was chosen over the Windows version bccausc it can gcncratc stand-alone,
compiled code that requires neither Windows nor Visual BASIC for execution. This means that the
application program can bc cxccutcd on another machine with a minimal amount of memory and
without the extra cost of other run-time supporting software. An important side effect is that Visual
Basic for DOS applications runs faster than Visual BASIC for Windows applications (actually, they
don’t run slower in Windows, the delays are due to the overhead of the Windows environment).

The first step in dcvclopmcnt of an application is the design and creation of the visual user
intcrfacc, in other words, what the user will scc on the scrccn. This consists of a panel of objects such as
switches and push buttons, textual display boxes, selection list boxes, and plots or graphs. These and
other objects (called controls) arc placed inside windows that the users SCC. The programmer draws the
controls on a blank window that will bccomc the user interface. After the interface has been crcatcd,
the objects on it will automatically mcognizc user actions such as mouse movements and button clicks.

Nothing similar to conventional programming occurs until after the GUI has been crcatcd. Even
then, the programming takes place in small unconnected segments. Each control in the window has a
function associa tcd with it. This function, dctcrmincd by the programmer, is coded using BASIC in the
traditional way. The code, however, will only bc cxccutcd when the control is activated with the
movement of the rnousc or with the click of a button. The selection of a control is called an event.

Conventional programs run from the top, down. The only change in the flow of the program is
dctcrmincd by the original programmer. Visual BASIC, on the other hand, works in a completely
different way. The Visual Basic program consists of a set of indcpcndcnt segments of code that arc
activated by the user. The choice of functions and the order in which they arc cxccutcd arc dctcrmincct
by the user.

4

If you have used the Windows version of Visual Basic, you will be disappointed in the DOS
version. The panels do not make usc of the visual mode of the computer’s intcrfacc card. Instead, the
controls arc constructed from the cxtcndcd characters of 1)0S’s ANSI set. This causes the control’s size
to be an integral multiple of character lines in height and an integral multiple of characters in width.
This is the price paid for keeping VBDOS small.

Visual BASIC is best used as a tool to develop GU1’S for a data acquisition package that can
take advantage of it.

SAMPLE PROGRAM REQUIREMENTS
A sample data acquisition and analysis program was written using each package. The program

rcquircmcnts were chosen to demonstrate the following activities: Developing ‘drivers’ that allow
communication with instruments through GPIB, commanding and controlling imtrumcnts, acquiring,
analyzing and plotting data from instruments, and developing a software user intcrfacc integrated with
the hardware.

The sample program should give the reader a feel for problems cncountcrcd during application
dcvclopmcnt. Also, the scrccn design tools and visual prcsentaticrn features of each tool arc
demonstrated.

The two instruments chosen were a signal generator and an analog to digital convcrtcr. The
application program controlled the wave type, amplitude, and frequency of the signal generator and
the sample rate, number of samples, and triggering of the A/D convcrtcr. The actual instruments and
their programmed operations were:

Wavctck Model 23 Function Gcncmtor: IC)tcch ADC488/16A Analog to Digital convcrtcr:
Wave type: Sine, square, or triangle. Sampling rate: Min. = 1 kHz, Max. = 10 kllz
Amplitude: Min. = .01 volt, Max. = 10 volt. Number of samplm upon trig~cring = 1024
Frequency: Min. = 10 11x, Max. = 999 Hz.

The sample program, upon command, acquired 1024 data points and plot tcd the time history on
the scrccn. The program then performed a Fast Fourier Transform (FFT) on the acquired data and
plotted it on a separate graph. Control of the program was a collection of scrccn-operated pulldown
menus, push buttons, switches, etc.

NATIONAL INSTRUMENTS LAIIWINDOWS, VIIRS1ON 2.2.1
This tool exists only for the PC platform. It is a good example of a data acquisition and analysis

package that bridges the gap bctwccn text-based and visual programming. Although it is often
confused with National Instruments LabVIEW, there arc vast diffcrcnccs bctwccn thcm. First,
LabWindows dots not work under the Windows environment. It was dcvclopcd before Windows even
existed. LabVIEW on the other hand, only runs under Windows. Got it? Actually, National instruments
says the next version of LabWindows will run under the Windows environment.

The crca~ion of an application in LabWindows requires the following steps:

1. Create or acquire the instrument drivers that will allow the dcvclopcd application code to
communicate via GPIB with the instrument(s).

2. Using the ‘User lntcrfacc’ function, crcatc the ‘panels’ and ‘mcnubars’ that will bccomc the
visual user interface in the executing application.

3. Create the code (in C or BASIC) that will respond to user ‘events’ (the result of a mouse
click or a keyboard entry while the application is executing), update displays, process
data, and communicate (via the drivers) to the instruments.

instrument Drivers
National instruments provides a large library of drivers for the most-popular GPIB and RS-232

controllable instruments. If a drivm is to bc written from scratch, a significant portion of the
application dcvclopmcnt effort could be devoted to writing a driver. The first problcm (assuming one
knows C or BASIC) is gaining an understanding of the instrument. Control of the instrument with both
its front panel and GPIB commands must bc understood. The next step is to learn the LabWindows
procedures that allow the creation of a driver. This parl of the LabWindows package is more complex
than developing scrccns and event handling. Driver dcvelopmcmt can bc facilitated by the mcnu-
assistcd code generation capabilities of LabWindows. General instrument control functions can .bc
sclcctcd from menus and modified for the specific instrument. in this way, the developer is isolated

5

from concerns about the correct syntax of the function calls. Once the driver is written or available to
the programmer, developing the application is straightforward.

User Interface Function
in LabWindows, panels arc the scrccns that contain displays, mcnubars, or controls (such as

push buttons and slide controls). Figure 2 shows examples of the controls that can bc placed on a panel.
There arc numerous color choices for panels and nmnubars. ‘heir size is also easily modified. The panels
may bc nested in the sense that the mcnubar (or a control that is clicked) on the panel will request a
subsequent panel. The sccrct to programming the application is to develop a naming schcmc for the
panels and controls that allows easy rcfcrcncc from code developed later.

Programming the Application
Programming an application is simplified by menus that explain and insert any C/BASIC

command that is allowed by LabWindows. ‘l’his means that programming cxpcricncc is required, but not
an in depth understanding of the syntax and semantics of the language being used. Function panels ask
for variable narncs and build an instruction with the variable in its proper syntactical position. ‘1’here
arc arnplc error messages and debugging features that help the programmer la tcr if problems arc
cncountcrcd. A typical LabWindows program would have the following modules:

1. Declaring and initializing variabk’s, library rcfercmccs, and initializing instruments
2 Displaying of the main panel and mcnubar (other panels could be called from this one)
3. Checking for and processing panel and mcnubar events
4. Communicating with the instruments
5. Storing, processing and displaying data

The %rnple Program
The LabWindows version of the sample program consists of three panels: an Opening Screen

that introduces the program and asks for an operator keystroke, a Main Pane] that is used to control the
test and output the results (Figure 3), and an initialization Panel that is used to initialize the
instruments (Figure 4).

The Initialization Panel
The LabWindows application first displays a title screen and then the main panel shown in

Figure 3. A mcnubar selection will display the initialization panel that is used for setting up
communications with the two instruments.

‘he Main Panel
The main panel provides status information and allows operator input. Some of the controls

indicate status, others arc for operator intcracticm.

Status Information
The status information controls arc outputs from the executing program that explain what is

happening. They canno{ bc ‘clicked on’ or modified by the operator:
1. Date
2. Time-of-day
3. Function generator status (this status is updated by the initialization panel)
4, Analog to digital converter status (this status also is updated by the initialization panel)
5. Graphs of the sampled data and calculated FFT
6. Program status (’sampling’ or ‘stopped’) ~
7. File name for stored data

Operator Input
These arc the controls that the operator may ‘click on’ and modify:
1. Function generator control values (wave type, amplitude, and frequency)
2. A/D convml?r sampling rate
3. A button for requesting a ncw Mmplc
4. A button for calculating and displaying an F1;T
5. A button for sending ncw parameters to the function generator
6. A button for sending a ncw sample rate the A/D convcrtcr

6

~’he operator selects waveform type, amplituclc, and frequency for the signal generator and
sampling rate for the A/D converter. The input controls were linked to logic that limited the range of
acceptable values. For example, if the operator entered an amplitude of 11 volts, it would
automatically y bc changed to 10 by the program before being sent to the instrument. Arbitrary limits for
the values were rnadc to simplify both the programming and the comparison of each compu tcr platform
and toolsct.

To initiate communication with the instruments, which is a prcrcquisitc to acquiring data, the
initialization pane] is sclcctcd from the mcnubar. The initialization panel is shown in Figure 4. Error
messages describing the problcm arc displayed when an instrument cannot bc initialized. Control
parameters can only bc modified from the main panel.

l>ocumentation
LabWindo ws comes with a complctc set of documents explaining its usc and operation. There is,

however, no index, which greatly limits the value of the documentation. The on-scrccn help is good
enough, though, that the other documentation is seldom nccdcd.

Support
The greatest challcngc in getting support when a problcm occurs is getting through the

telephone queue and finding a consultant who is not busy. When all the consultants arc busy, a call for
assistance is not always expeditiously returned. It is nearly always returned, but this may take hours.

Summary
L.abWindows is an appropriate development tool when the application is required to bc a stand

alone program that runs on a PC. It is especially appropriate when the data acquisition is at a high
rate and timing is critical. The program dcvclopcr must have a rudimentary knowledge of either Basic
or C. It should bc pointed out that there arc many non-instrumentation applications for Lab Windows.
Anyone developing an application that requires a complicated set of GUIS, including simulation or
process control could bcncfi t from the usc of Lab Windows.

Onc shortcoming of the current version of LabWindows is the non-support of the standard C
libraries. ‘I’his deficiency causes the programmer to spend nccdlcss time inventing a work-around for a
normatly available function. Reportedly, a future version of LabWindows will support the common C
libraries.

VISUAL BASIC & WAVhTtIST
Recognizing the advantages of using G Uls for data acquisition on t hc PC, Wavetck Corporation

crcatcd a toolsct called Wavc”l’cst V 11’ (Visual instrument Programmer) that is used to bring instrument
control into Windows applications that support Windows Dynamic Data Exchange (DDE) or Dynamic
Link Library (DLL). VIP is csscntial]y a srt of functio]is that can br called from applications such as
Microsoft Excel and Supcrbasc IV and Windows programming languages such as Microsoft Visual
BASIC, C, C++ and Quick C, Borland C, C++ and I’urbo Pascal, and HP Basic for Windows.

Not only dots WavcTcst VIP make its instrument control, data acquisition, data analysis, and
data presentation capabilities available to any Windows application supportin~ DDE or DLL, the VIP
fu net ions arc complctcl y indcpcndcnt of the app]ica tion calling them. This gives the programmer the
option of choosing an appropriate Windows application to work in rather than being locked into onc
particular option from beginning to end. Visual BASIC was chosen as the application to usc with VIP
for the sample program.

Another advantage of the VII’ tool is that its modules for instrument control can bc used to
communicate with the same instrumcn t over diffmcnt bus interfaces. In other words, a GPIB instrument
can bc rcplaccd with a VXI instrument without altering the instrument setups. The only change that
needs to bc made is to tell VIP to look for the instrument on the VXJ bus instead of the GPIB bus. Bus
interfaces supported by WavcTcst V]]’ include GPIB, VX1, VME, and RS-232.

The Sample Program
Creation of an application usinS Visual Basic and WavcTcst VII’ requires the following steps:

1. Acquire or crcatc (using the VIP library Generator) instrument drivers.
2. Create instrument setups using the VIP Instrument Manager. (Instrurncnt setups arc VIP rnodulcs

that will bc called from Visual Basic for instrument communication.)

7

3. Create the ncccssary graphical user intmfaccs using the Visual Basic Form editor or the WavcTcst
VIP Panel Editor.

4. Write the code in Visual Basic that will respond to user events on the panels or forms, update
display s,procm.sdata, and make calls to WavcTcst VII’modules.

Instrument Drivers
The VIP Library Generator is used for creation of instrument drivers called instrument Library

Files (lLFs). Figure 5 shows the inshwmcnt driver for the function generator, The Library Gcncratcrr is
WavcTcst VIP’s most cffcctivc and efficient component, instrument Library Files arc simple to create
since VIP takes care of all the lower level bus-specific interface details. This gives the Library
Generator two very strong features. First, the programmer’s work is rcduccd to filling in dialog boxes
with higher level, instrument-specific commands, Second, ILFs crcatcd with VIP’s Library Generator
are not bus-specific so that separate drivers do not have to bc written to communicate with the same
instrument over different buses. Over 275 complete instrument Library Files arc included in the
WavcTcst VIP package, so the programmer may never even have the need to usc the Library Generator,
lncidcntally, the drivers supplied with VII’ may bc modified with the Library Generator to
accommodate specific needs.

The Library Generator was not used in creating the sample program bccausc both instrument
library files nccdcd were part of the WavcTcst VII’ instrument Driver Library. Not only were they
included, they worked !

instrument Setups
The Instrument Manager has two main purposes. Onc is to crcatc instrument setups. An

instrument set up is a mod UIC that CXCCL1 tcs a subset of 1 LF commands when called from an application.
The file containing the ncccssary sc’tLIps for an application is called an instrument (kmmand I)cfinition
(lCD) file, Two steps must bc taken for the calling program to gain access to instrument setups and other
VIP functions. The instrument Manager must bc running in the background during program execution and
the calling program must include a function call that loads the correct ICD file before making calls to
these modules.

The second purpose of the instrument Manager is for testing lnstrurncnt library Files. Bus trace,
simulation, and interactive instrument control cnab]c thorough testing of ILFs and instrument setup
modules before they arc used by the calling program. Another uscfu] aspect of the instrument Manager
is that its debugging utilities arc available while the calling program is running. Bus activity,
thcrcforc, can bc moni torcd during debugging of the calling Windows application. Figure 6 shows the
Instrument Manager with the samp]c program lCD loactcd.

lnstrutncnt setups for the sample app]icat ion were crcatcd and tested in about onc hour. First,
the two instrument drivers from the VIP Inst rumcnt Library were loaded into the instrument Manager.
The correct GPIB addresses were cntcrcd and instrument setups were crcatcd to serve the functions
required by the ~~nq>lc program, Dcvclopmcnt time for instrument setups depends on how complex the
setups arc, but the process is straightforward,

Creating the User Interface
Both WavcTcst VIP and Visual Basic provide tools for creating a graphica] user intcrfacc.

Though the Visual Basic GUI capability is more cxtcnsivc and colorful than the WavcTest VIP pane],
the VIP panc]s were used for the sample program to examine the feasibility of using VIP with a
Windows application lacking its own GUI capability. Figure 7 shows a WavcTcst VIP Panel. Four
panels were crcatcd: a main panel, an instrument i nit ializ.ation panel, and two panels for the graphs of
samp]cd data and FFT results. Development of the four panels was complctcd in about an hour.

The VIP panels and controls were very simple to display and interact with using Visual Basic.
Though the controls available in the VII’ l’ancl Editor arc not as numerous nor colorful as the ones in
Visual Basic, they were adequate for the data acquisition and instrument control purposes required by
the samp]c program. Onc bug was found when using the l’ancl Editor. When Visual Basic is open in the
background and the user chooses to exit the Panel Editor after saving a panel but without closing it, an
error is incurred which requires a systcm reboot to resolve.

Programming in Visual Basic
The final steps in the dcvclopmcnt of the sample program involved writing the Visual Basic

code to load and display the appropriate panels and to look for and process operator inputs.
Essentially, each pane] rcqu ircd a loop that looked for state changes of the push buttons on the panel.

8

When a state change was detected, the corrcsponcting function was pcrfornwd. Exit from the loop was
controlled by a spcci ficd ptlsh button on each pane]. J:uI1 y commcntcd code was writ tcn in about three
clays. ‘l’he code included checks to prevent the operator from performing operations in an invalid
sequence, i.e., performing an Fby~ before gathering data.

Documentation
Wavetck provides a Getting Started and Quick Rcfcrcncc Manual that contains an casy-to-

follow introduction to the WavcTcst VII’ package, An example application is rcvicwcd to give the user
an overview of the basic compcmcnts of VIP and to demonstrate its capabilities. Then, step-by-step
instructions arc given that allow the user to crcatc some of these components from scratch and test thcm
interactively. In this way, the demonstration of the application’s functional t y is supported by a scmz
of what effort goes into achieving that ICVCI of functionality. After working through examples in the
Getting Started manual, a user will have a clear understanding of the purpose and basic characteristics
of WavcTcst VIP. Wavetek also provides two volumes of refcrcncc manuals describing the different
components of VIP. The Programmer’s Rcfcrcncc was particularly useful for looking up the commands
nccdcd to access VIP functions from the Visual Basic calling program.

Support
User support from Wavctck was excellent. If an answer to a question was not irnmcdiatcly

forthcc~ming, it was quickly found. Calls were usually returned within 15 rninutcs, The explanations
were clear and concise and the consultants were willing to spend whatever time it took for the
explanation to bc thoroughly understood. Except for the bug in the Panel Editor mcntionccl above,
WavcTcst VIP pcrfornmd exactly as advertised and provided easy access to instrunmnt control, data
acquisition, data analysis, and data display from the Visual Basic program.

Summav
The Wavc~’cst VII’ package brings powerful instrument control capabilities to the Windows

environment. The instrument Library Generator removes the hcadaclw of lower lCVCI bus intcrfacc
commands from instrument driver dcvclopnwn!. The instrument Manager facilitates functional
instrument control that isolates the programmer from the details of controlling the instrument.
WavcTcst VIP’S versatile instrument control modules can be used by any Windows DLL or DDE
applications. VIP supports GPI Et cards and cmbcddcd VXI cc)nt rollers from several manu fact urcrs. In
addition, the next rclcasc promises to provide the same basic VIP driver dcvclopnwnt environment for
AT-bus cards and instruments, overall, the WaveTest VIP too]sct is simple to usc and compatible with
the more popular Windows applications and inst m nv.mt bus interfaces. These features make it a strong
candidate for inst rumcnt con t rol. It does, however, work best when used with other software packages,
e.g., Visual BASIC, EXCEL, etc., which will drive up the cost of the ‘system.’

Other I’C platform Software tools
These arc only two of the multitude of software tools currently available for data acquisition

and processing. Ncw programs arc introduced each year. Due to the MTC’S rcquircmcnt for general
purpose tools that interact with a wide variety of instruments and intcrfaccs, software packages with
limited functionality and/or compatibility just aren’t useful.

TWO packages worth noting arc Laboratory T’cchnologics’ LabTcch Notcboc)k and Gcotcst’s
ATEasy. LabTcch Notebook is a DOS program that LISCS a spreadsheet or tabular type of ccmfiguraticm
and set-up section as WCII as an optional icon section. The list of drivers for intmnal data acquisition
and GPIB cards is very impressive and includes nearly all manufacturers. It merits consideration, now
that it no longer rcqui rcs a hardware key.

Gcotcst’s Al’Easy is an auto ma ted test equipment program that runs under Windows. It is a menu
ctrivcn ‘dcsigl~-y(~llr-(~ wl]-lal~~tlagc>’ program that seems easy to learn and USC. It can incorporate the
users’ existing Assembly, C, or Pascal code and integrate it into its own program. It costs $3K for the
GPIB version and $4K for the VXI version, and it dots require a hardware key.

CONCLUSIONS TO PART 1
The selection of an appropriate tool depends to a large extent on the application and the

customer (assuming the cnd user is not the program dcvclopcr) who will usc the product. If speed or
timing is critical, L,abWindows is the logical choice. LabWindows is also the logical choice if the
customer wants a stand-alone cxccu table program that requires no other software.

9

If the cus[cnmr ncccls to acquire data clircct]y into a Windows sprcaclshcet, WaveTcst VIP is
the easiest to use. This is also the best tool to use if the programmer needs the versatility of using
Visual C, Visual BASIC, or any new, yet to be dcvclopccl product that runs under windows.

If it is important to transport the application from one platform to another, then the only
choice is one of the visual progra]iuning packages (LabVIEW for Windows or, soon, VEE for Windows).

PART 2
Part 2 will discuss the visual programming approach and discuss development of the sample

program using National instruments’ LabVl13W and Ilcw]ctt I’ackarcl’s Visual Engineering
Environment, including VEE for Windows. Stay tuned. It’s worth it.

REFERENCES
1. An Adapfive Sfructure Data ucquisitim System using a Visual-Based Programming Lm.guage, E. C.

Ilaroth, D. J. Clark and R. W. l.oscy, Fourth Al AA/Air Force/NASA/OA1 Symposium on
Multidisciplinary Analysis and Optimization, Cleveland, Ohio, Scptcmbcr 21-23, 1992.

2, Acquisition, Analysis, Control, and Visualization Of Data Using Personal Cmnputcrs and a Visual-
Based Programming Language, E, C. Baroth, D. J. Clark and R. W. Loscy, Confcrcncc of American
Society of Engineering Educators (ASEE), Toledo, Ohio, June 21-25, 1992.

3. Diagram Compilers Turn Pictures into Pmgra/ns, Charles H. %~all, 13DN Special Report, June 1991,
pp. 13-20.

4. Software Makes 1/s Honw in the Lab, Michael Puttrc’, Mechanical Engineering Magazine, October,
1992, pp. 75-78.

5. 7odny’s Lquipmen # Tests Tomorrow’s Designs, Debra Bulkc]cy, Design News Magazine, May 17,
1993, pp. 82-86.

10

Examples

Q
Visual Programming Languages National Instruments LabView

Hewlett Packard VEE

National Instruments Iabwindows
Wavetek WaveTest VIP

GUi Design Tools
Mthoullnairumsmt .uppofl

Microsoft Visual BASIC

*-.

Figure 1. lnstrumcntaticm Software Crossroads

llffKtnPIKU Tlllh w 1 ! lYTTtmTNIS!

Hlrlfl
+ Shll! 114811: I

MYll r!

10

I

lhIs I!a IHII tIUK

W#ectian Mox

T1. ~

chD+ce “Z
choke A’5

.i

Irm Isa SIHIYlllHKl

10.00

8,00
6, DO
48 no
2*00
0.00F/3

Figure 2, L,abWindows Panel Sampic Controls

Status

~flUETEK I ln~j~ti’lize~ Flmplitude

15.00
Type of Waveform min=.01 max=10

> Sine
[requencv

Send commands to WllVrTEK
F

rein= 10 maH=999

Ew.1 In:::ia’ized
]— E r r o rSampl ing Rate [KHz) 1 0

min=l marf=9999

Send commands to IoTICH I

Run Status:

FFT
1oo-

80-

60~

‘ iFwF%FEo 205 4 1 0 614 8 1 9 1024

Samrde *, I

Figure 3. LabWindows Sample Program Main I’ancl

EX1’ItoMflINpanel! EXITtoDOS!

Wauetek Function Generator ioTECH f)DC488/16fl

d ~1[

Siatus Status
neuer i n i t i a l i z e d newer initialized

UJaueform Type: scan count init error

s i n e s c a n interual i n i t e r r o r

Figure 4. L.abWinclo ws Sample Program lnit ializ,at ion Panel

. WaveTest Librarv Generator VA

F i l e Help

Edit ~oftPanel Cards S~ecial Help

Manufacturer: Model: N a m e : Bus Addr:

1 ~ I’yn” ‘uncGen I “i El ‘ecu
IMMEDIATE

m
Execute

● —
:=,— Dt32RETE

PARAMETERS
Frequency

ml CONTINUOUS

MAIN I
D:=:=

n,—:=● —

Function

[Dt33RETE

IIEEl
Amplitude

CONTINUOUS

01
Null Out pUt+—.—

:= DD3RETE

offset
ml CONTINUOUS

TRBG E RING

D● —:=.—

,D:=● —
● —

u:=,—,—

skme
I Dt33RETE

Rising Edge

DEJ3RETE

Falling Ecbe

I DWRETE

Talk Mode ?
f? QUERY

01
SRQ Masks

:=
● —,— DD3RETE

Figure 5. Example of WaveTest VIP instrument Driver

0

~ile Edit I n s t r u m e n t s Bus Help

AbDCcrwwlw lSmhiUmGwn I I I

Figure 6, WavcTcst VIP lnstrunwnt Manager

0.141 ‘Il. v
—

r————_l s t a t u s

I WAVETEK II Never Initialized I
L 1 ,

I Send Commands to Wavetek I

Square
Triangular

Requested Amplitude ~olts]

15.00]

Frequeney (Hz]

n

Ezl r~~:r,nitia,i=d I
[Send Commands to ioTECH]

B

Sample Rate
I

5 kHz
2 kt{z
1 kHz

Go to Initialize Instruments Panel

I Do Sampling Run J
Run Status:

I Quit I

Filename for data storage

I WAVE DATA.DAT I

I Initialize Instruments I
I 4

r
I Do Sample Run I

/ Perform FFT [

Figure 7, WavcTcst VIP Panel

I Send Commands to Wavetek
I

WAVE TYPE FREQUENCY AMPLITUDE

TRIANGLE -

SQUARE -
$:’;:O {y-&:.

SINE -
T + 999

0

Send Commands to 10tech

SAMPLE RATE

/
1 kHz -

2 kHz - I
5 kHz - I

SAMPLED DATA Arnplltude (Volts) w Ttme (seconds)

6,0-

4.0-
2.0-

0.o-
-2.0-

-4,0-
[-6.0 ‘,

0.000

FFT

7.0- ,

, 1

0,020 0.040 0.(
1

0 0 .(3 0.’ >0 OJ’20

6 . 0 -

5.0-

4.0-
3.0-

2.0-
l.o -

kL0.0-, J+L+.JAAA,L. * . ,

o 1000 2000 3000 4000 !5000

10kHz -
44

Figure 8. l..abVIEW Sample T’rogram Front T’ancl

Initialize Instruments Send Commands to Wavetek Send Commands to 10tech Do SamDle Run Perform FF1

'""'"''""" `"""""""" """'"""''"'"'"'"'''`""""`''""'""'"'""""""''"m
0,00 .,, ,., ,,., ,,., ,,., ,.., ,,., ,, .,, ,,, ..,, ,,,.. , ... ,,.. ,,., ,,,, ,,., ,,..

V,va+ak rmlR ,.4,+.<< WAVE TYPE =‘[F. “, ,W ““w, ,=-.

~

~J

A M P L I T U D E \l II
--l I
FREQUENCY

m

~:

10tech GPIB address SAMPLE RATE

m

F I%d I Send 10tech Settings If=ll

“~, ,
m"'""B"""""'~"""""""""""""""""""""""""""""""'""""""""""""""'"""""'""""'"""""'""'""''`"""'`"'""""""""''"""''"""'`"""''''""""'

m
““”””’’’’”’’’”’’’’’’’’’””m

QUIT ~~....,Q

Figure 9. Sample l’rwgram L,abVIEW Diagram

WAVETEK 23 SYNTHESIZED FUNCTION GENERATOR

5

GPIB RDDRESS

+ 5.00
AMPLITUDE

+ 1.000E4

FREQUENCY

5 0.00
OFFSET

ERROR

FUNCTION MODE
/ /

D C - , SYNTHESIZED - .

RAMPDN - C L O C K -

R A M P U P - G A T E D H A V E R -

TRIANGLE -
TRIG HAVER -

G A T E D -
SQUARE -

+

TRIGGERED - I
S I N E - CONTINUOUS -

+

TRIGGER SLOPE
/

NEGATIVE -
I

POSITIVE -
+

FigurclOa. LabVIEW San@eJ’rogranl Instrunm)tDriver Panel

— — — —— ——

BUILD COtlllt3ND STRING & XQO:SRQ O F F ; B:tlODE; C:FUNCT
SEND IT TO INSTRUMENT. F:FREQUENCV; R:RMPLITUDE;

D:OFFSET; QH:NEGRTIUE S L O P E ;
QJ:POSITIUE SLOPE; I:EXECUTE

X Q O w~~ B%d ~ “ d1LLL!2-IH * y
TRIG ‘-wSLOPE

~ (4%3 .2

ml k’ D%.lf I WTK 23

RMPLITUDE m r-”””-l--r”--

‘uNcTm
FREQUENCV

\

FigurclOb. LabVIEW San~plcProgran~ I1~s[rL]l~~c~~tDrivcr Diagram

-ml
GPIB f3DDRESS

Status
Date I—l Time-lIWAVETEKI

rIs[WaveType

nevel initialized

Error Requested Amplitude:

o P!cl
min=.01 max=l O

Ftequency:

I Send Commands To w~] m
L I

min=10 max=999

m l:n:;’ia’ized I
I J Sample Rate:

[SendCommandsTo ioTECH I m

‘i’ename for ‘a’aStorage ~
0[DoSamplingRun [F4)

Run Status: -

[~

I 1 I I

Snapshot of Sampled Data
1.0
0,8

volt’s 0“6
0.4

::L—_———
0 2 4 6 8

llrne[rrdlliseconds)

FFT

0 1 2 3 4

Sample #

Figure 7a. Visual BASIC Form (IIXI’RA)

.

-.
..

